If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-95=0
a = 1; b = -6; c = -95;
Δ = b2-4ac
Δ = -62-4·1·(-95)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{26}}{2*1}=\frac{6-4\sqrt{26}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{26}}{2*1}=\frac{6+4\sqrt{26}}{2} $
| f/2+3f=8−3f | | a/2+6=15 | | v/6-3.5=-22.7 | | -6s=-5s+7 | | 16^x+16^x-1=10 | | 1=h/3 | | 1 = h3 | | 2+7g=7g | | 12t-18=12t+8 | | 3(2x5)=5 | | 35x+19=320x−7 | | 15=-4n-5 | | √d‾=10 | | 5x+-19=-4 | | 5j+4j-7j=16 | | 7w-2=-23 | | 2.4x+10-0.35x=-0.25 | | u-4/5=31/4 | | X-60=y | | 3-9x=-33 | | 14+5=5x(3x+15)+5 | | 8t+6=-28+t | | 0=9z-9z | | 20w+4w-9w+4w-13w=6 | | 4+x=-5-20 | | 14+5=-5x-6(-3x | | 23=9y-5 | | 9=a/8+10 | | 5x−2+x=9+3x+10 | | 20j-18j=14 | | 3(x+5)=0/5 | | (7=2i)-(3-4i) |